Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 201(7): 3341-3355, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36224318

RESUMO

Ammonia could be regarded as one detrimental pollutant with an acrid smell in livestock sheds. So far, the pig breeding industry became the main source of atmospheric ammonia. Previous literature demonstrated that excessive ammonia inhalation might cause a series of physiological damage to multiple organs. Unfortunately, the toxicity mechanisms of gaseous ammonia to the porcine nervous system need further research to elucidate. Selenium (Se) involves in many essential physiological processes and has a mitigative effect on the exogenous toxicant. There were scant references that corroborated whether organic Se could intervene in the underlying toxicity of ammonia to the hypothalamus. In the present study, multi-omics tools, ethology, and molecular biological techniques were performed to clarify the detailed mechanisms of relaxation effects of L-selenomethionine on ammonia poisoning. Our results showed that ammonia inhalation caused the clinical symptoms and the increment of positive apoptosis rate in the hypothalamus with the dysfunction of mitochondrial dynamics factors, while obvious mitochondria structure defects were observed. In parallel, the inflammation medium levels and gut microbes-driven metabolism function were altered to mediate the neurotoxicity in fattening pigs through the initiation of inflammation development. Interestingly, L-selenomethionine could attenuate ammonia toxicity by activating the PI3K/Akt/PPAR-γ pathway to inhibit the mitochondria-mediated apoptosis process, blocking the abnormal immune response and the accumulation of reactive oxygen species in the nucleus. Meanwhile, Se could enhance the production performance of fattening sows. Taken together, our study verified the novel hypothesis for the toxicity identification of aerial ammonia and provided a therapeutic strategy for the treatment of occupational poisoning.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Suínos , Feminino , Selênio/farmacologia , Amônia/farmacologia , Selenometionina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Antioxidantes/metabolismo , Apoptose , Inflamação
2.
Ecotoxicol Environ Saf ; 248: 114325, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436255

RESUMO

Ammonia has been reported to have a variety of toxicity to aquatic animals, farm animals and humans. However, its potential toxicity on the intestines remains unknown. L-selenomethionine is one of the important organic selenium sources. However, the mitigating effect of L-selenomethionine on ammonia exposure toxicity is still lacking. Therefore, in this study, the mechanism of toxic action of ammonia on intestinal tract and the detoxification effect of L-selenomethionine were examined. We evaluated the intestinal toxicity of ammonia and the alleviating effect of L-selenomethionine in an in vivo model, and then verified it in vitro model by a variety of cutting-edge experimental techniques. Our results showed that ammonia exposure causes oxidative stress, necroptosis, Th1/Th2 imbalance and inflammation in the intestinal tissue and the intestinal cells, and L-selenomethionine had a significant mitigation effect on the changes of these indexes induced by ammonia. In conclusion, ammonia exposure caused oxidative stress and Th1/Th2 imbalance in the porcine small intestine and IPEC-J2 cells, and that excessive ROS accumulation-mediated necroptosis targeted inflammatory responses, resulting in the destruction of tight connections of intestinal cells, thereby causing intestinal barrier dysfunction. L-selenomethionine could effectively reduce the intestinal injury caused by ammonia exposure and antagonize the toxic effect of ammonia.


Assuntos
Amônia , Selênio , Humanos , Suínos , Animais , Amônia/toxicidade , Selenometionina/farmacologia , Antioxidantes , Estresse Oxidativo , Selênio/farmacologia
3.
Ecotoxicol Environ Saf ; 242: 113937, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999759

RESUMO

Ammonia (NH3) is a common air pollutant, which poses a serious threat to farm animals. L-selenomethionine is organic selenium (Se), which can inhibit intracellular ROS generation, block ROS-dependent autophagy, promote mitochondrial energy metabolism, and enhance the body's immunity. Lung, as an important organ of the respiratory system, is highly susceptible to the toxic effects of NH3. However, there were few studies on the mechanism of toxic effects of NH3 on lung tissues. The aim of this study was to investigate the effect of NH3 on the lungs in pigs and the alleviating effect of L-selenomethionine. Twenty-four Large White*Duroc*Min pigs were randomly assigned to 4 groups: control group, NH3 group, Se group, and NH3 +Se group. The results showed that exposure to NH3 caused damage and inflammation in lung tissues and significantly increased blood NH3 concentration. NH3 induced changes of oxidative stress indexes (GSH, GSH-Px, SOD, MDA, Keap1, Nrf2, and HO-1) and expressions of energy metabolism related genes (HK1, HK2, PFK, PK, LDHA, and HIF-1α). Ultrastructure showed that mitochondrial damage and autophagosome increased significantly, and the expression levels of autophagy related genes (Beclin1, ATG5, ATG7, ATG10, and p62) changed. However, the addition of L-selenomethionine alleviated the above changes, but there was still a significant difference compared with the control group (P < 0.05). This finding can provide a new evidence for mitigation of NH3 toxicity.


Assuntos
Lesão Pulmonar , Selênio , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lesão Pulmonar/induzido quimicamente , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Selenometionina/farmacologia , Suínos
4.
Ecotoxicol Environ Saf ; 242: 113918, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35882110

RESUMO

Ammonia (NH3) is a hazardous substance to human and animal health. Selenium (Se) is an essential micronutrient with multiple health benefits. The present study aimed to verify whether and how Se supplementation has a protective role against NH3 mediated-nephrotoxicity in pigs. A Se-NH3 interaction model was established in pigs and the kidney samples were collected after a 30-day treatment period. The results showed that NH3 exposure inhibited the PI3K/AKT/mTOR pathway and enhanced the secretion of inflammatory cytokines to induce autophagy and inflammation. Se can regulate the PI3K/AKT/mTOR pathway and attenuate the secretion of inflammatory cytokines altered by NH3 to reduce autophagy and inflammation. In addition, Se co-treatment inhibited ROS production, elevated the activities of antioxidant systems, and increased the expression of 13 selenoproteins in pig kidneys caused by NH3 exposure. These results implied that L-selenomethionine can moderate NH3-induced nephrotoxicity in pigs. Our study gives new ideas for the specific mechanism of NH3 nephrotoxicity and provides a reference for comparative medicine and clinical medication.


Assuntos
Fosfatidilinositol 3-Quinases , Selênio , Amônia , Animais , Antioxidantes/metabolismo , Apoptose , Autofagia/fisiologia , Citocinas , Humanos , Inflamação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Transdução de Sinais/fisiologia , Suínos , Serina-Treonina Quinases TOR/metabolismo
5.
Animals (Basel) ; 12(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35565630

RESUMO

Ammonia is one of the major environmental pollutants that seriously threaten human health. Although many studies have shown that ammonia causes oxidative stress and inflammation in spleen tissue, the mechanism of action is still unclear. In this study, the ammonia poisoning model of fattening pigs was successfully established. We examined the morphological changes and antioxidant functions of fattening pig spleen after 30-day exposure to ammonia. Effects of ammonia in the fattening pig spleen were analyzed from the perspective of oxidative stress, inflammation, and histone methylation via transcriptome sequencing technology (RNA-seq) and real-time quantitative PCR validation (qRT-PCR). We obtained 340 differential expression genes (DEGs) by RNA-seq. Compared with the control group, 244 genes were significantly upregulated, and 96 genes were significantly downregulated in the ammonia gas group. Some genes in Gene Ontology (GO) terms were verified and showed significant differences by qRT-PCR. The KEGG pathway revealed significant changes in the MAPK signaling pathway, which is strongly associated with inflammatory injury. To sum up, the results indicated that ammonia induces oxidative stress in pig spleen, activates the MAPK signaling pathway, and causes spleen necrosis and injury. In addition, some differential genes encoding epigenetic factors were found, which may be involved in the response mechanism of spleen tissue oxidative damage. The present study provides a transcriptome database of ammonia-induced spleen poisoning, providing a reference for risk assessment and comparative medicine of ammonia.

6.
Biol Trace Elem Res ; 200(11): 4712-4725, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35094233

RESUMO

L-Selenomethionine is one of the important organic selenium sources. The supplementation of L-selenomethionine in diets is significant to improve the health of pigs. Ammonia is a major pollutant in the atmosphere and piggery, posing a threat to human and animal health. Although ammonia exposure can damage the heart, the mechanism of cardiac toxicity by ammonia is still unknown. In this study, we investigated the mechanism of cardiac injury induced by ammonia exposure in pigs and the protective effect of L-selenomethionine on its cardiotoxicity. The results showed that the blood ammonia content of pig increased significantly in ammonia group, the expressions of energy metabolism-related genes (LDHA, PDK4, HK2, and CPTIB) and the oxidative stress indexes were significantly changed (P < 0.05), the AMPK/PPAR-γ/NF-κB signaling pathways were activated, the chromatin edge aggregation and nuclear pyknosis were observed in ultrastructure, the apoptotic cells were significantly increased (P < 0.05), and the mRNA and protein expressions of apoptosis-related genes (Bcl-2, Bax, Cyt-c, caspase-3, and caspase-9) were significantly affected (P < 0.05). The above changes were significantly alleviated in ammonia + L-selenomethionine group, but there were still significant differences compared with the C group (P < 0.05). Our results indicated that ammonia exposure could cause energy metabolism disorder and oxidative stress and induce apoptosis of cardiomyocytes through AMPK/PPAR-γ/NF-κB pathways, which could lead to cardiac injury and affect cardiac function. L-Selenomethionine could effectively alleviate the cardiac damage caused by ammonia and antagonize the cardiotoxicity of ammonia.


Assuntos
Poluentes Ambientais , Selênio , Proteínas Quinases Ativadas por AMP , Amônia/farmacologia , Amônia/toxicidade , Animais , Antioxidantes/metabolismo , Cardiotoxicidade , Caspase 3/metabolismo , Caspase 9/metabolismo , Galinhas/metabolismo , Cromatina/metabolismo , Poluentes Ambientais/metabolismo , Humanos , NF-kappa B/metabolismo , Estresse Oxidativo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , RNA Mensageiro/metabolismo , Selênio/farmacologia , Selenometionina/metabolismo , Selenometionina/farmacologia , Suínos , Proteína X Associada a bcl-2/metabolismo
7.
Environ Pollut ; 294: 118659, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896222

RESUMO

The experiment was conducted to investigate the effects of Cadmium (Cd) on growth performance, blood biochemical parameters, oxidative stress, hepatocyte apoptosis and autophagy of weaned piglets. A total of 12 healthy weaned piglets were randomly assigned to the control and the Cd group, which were fed with a basal diet and the basal diet supplemented with 15 ± 0.242 mg/kg CdCl2 for 30 d, respectively. Our results demonstrated that Cd significantly decreased final body weight, average daily feed intake (ADFI), average daily gain (ADG) and increased feed-to-gain (F/G) ratio (P < 0.05). For blood biochemical parameters, Cd treatment significantly decreased the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), total protein, albumin, copper content and iron content (P < 0.05). In addition, liver injury was observed in the Cd-exposed group. Our results also demonstrated that Cd exposure contributed to the production of ROS, activated the AMPK/PPAR-γ/NF-κB pathway (increasing the expressions of P-AMPK/AMPK, NF-κB, I-κB-ß, COX-2, and iNOS, decreasing the expressions of PPAR-γ and I-κB-α), finally induced autophagy (increasing the expressions of Beclin-1, the ratio of LC3-II/LC3-I and p62), and apoptosis (increasing the expressions of Bax, Bak, Caspase-9, and Caspase-3, decreasing the expression of Bcl-2). Overall, these findings revealed the vital role of AMPK/PPAR-γ/NF-κB pathway in Cd-induced liver apoptosis and autophagy, which provided deeper insights into a better understanding of Cd-induced hepatotoxicity.


Assuntos
Cádmio , NF-kappa B , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Autofagia , Cádmio/toxicidade , Fígado , PPAR gama , Espécies Reativas de Oxigênio , Suínos
8.
Toxicology ; 462: 152961, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560125

RESUMO

Colistin is a cationic polypeptide antibiotic. Despite its nephrotoxicity, it is still widely used as a last-line antibiotic against infection worldwide with the emergence of multi-drug resistant Gram-negative bacilli. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for kidney development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay affects the nephrotoxicity of colistin is largely unknown. Therefore, in this study, we verified that colistin could induce mouse kidney apoptosis through some apoptotic indicators, and confirmed the relationship between methylation and apoptosis through the detection of m6A methylation, thus elucidating the potential mechanism of colistin nephrotoxicity. The results showed that the renal tubule dilation and tubular structure were observed in the colistin group, and the oxidative stress index and ATPase activities were significantly different from those in the control group. Under electron microscope, the kidney in colistin group showed typical apoptotic morphological changes such as nuclear pyknosis, chromatin edge aggregation, and intact nuclear membrane, accompanied by significant changes in apoptosis-related genes. The level of m6A in the colistin group was significantly decreased, accompanied by downregulation of METTL3 mRNA and protein levels, and METTL3 was significantly correlated with apoptotic gene proteins. Data from this study suggested that m6A methylation was involved in oxidative stress-mediated apoptosis in the mechanism of colistin nephrotoxicity.


Assuntos
Antibacterianos/toxicidade , Colistina/toxicidade , Rim/efeitos dos fármacos , Metiltransferases/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Animais não Endogâmicos , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , Metilação , Metiltransferases/genética , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Ecotoxicol Environ Saf ; 224: 112668, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34450428

RESUMO

Ammonia is an acknowledged environment pollutant in atmosphere with irritating smell. Previous studies have shown that excessive ammonia has toxic effects on farm animals and humans. However, the detail toxicity mechanism of ammonia to pigs is still unknown so far. In order to clarify the mechanism of ammonia toxicity, we established a porcine exogenous ammonia poisoning model and assessed the effects of ammonia on the gut-brain axis by transcriptome sequencing, histological observation and chemical analysis. Our results showed that after 30 d of ammonia exposure, 578 differentially expressed genes (DEGs) and 407 DEGs were obtained in the hypothalamus and jejunum, respectively. These DEGs were enriched into Gene Ontology terms associated with inflammation, oxidative metabolism, apoptosis, and the highly expressed genes among these DEGs were verified by real-time quantitative PCR. The content of glutathione and the activities of glutathione peroxidase and superoxide dismutase were significantly decreased, while malondialdehyde content was increased after ammonia exposure. Corticotropin releasing factor, substance P, 5-hydroxytryptamine and ghrelin contents in serum elevated significantly. Furthermore, pathologic observation in the ammonia group revealed infiltration of lymphocytes in the hypothalamus and significant decrease of jejunal epithelial cells. Our results indicated that ammonia exposure mediated changes in transcriptional profiles, pathological damage, oxidative stress and brain-gut peptide of the pig jejunum and hypothalamus, and induced the imbalance of the brain-gut axis through the "oxidative stress-inflammation-apoptosis" interaction network. Our study not only provides a new perspective for the toxicity assessment of ammonia, but also enriches the toxicology mechanism of ammonia.

10.
Ecotoxicol Environ Saf ; 223: 112596, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352572

RESUMO

Ammonia (NH3) emission is a common threat to farm animals. Selenium (Se) is known for its antioxidant property and can resist several stressors affecting farm animals. The aims of this study were (Ⅰ) to determine how excess NH3 exert nephrotoxic effects in pigs and (Ⅱ) to investigate whether selenomethionine has an alleviative effect on NH3 toxicity. Two diets supplemented with different doses of Se (0.22 mg/kg or 0.50 mg/kg) and two concentrations of NH3 (< 5 mg/m3 or 89.8 mg/m3) were used in a 2 × 2 factorial design trial for a period of 30 days. The results showed that NH3 exposure caused apoptosis and increased the number of apoptotic cells in pig kidneys. Further, the activities of antioxidant enzymes were decreased, and the transcriptional and translational levels of endoplasmic reticulum stress-related genes, Bcl-2 and Caspase family members were increased under NH3 exposure. In addition, Wnt/ß-catenin signaling pathway was suppressed after NH3 treatment. Dietary supplement with selenomethionine appears to offer protection against NH3-induced kidney injury in pigs and the pathologic changes above were alleviated. Our findings provide additional insight into the mechanism of NH3 toxicity in pigs while elucidating the role of Se as a potential antidote against NH3 poisoning.


Assuntos
Antioxidantes , Selênio , Amônia , Animais , Apoptose , Estresse do Retículo Endoplasmático , Rim , Selênio/farmacologia , Selenometionina/farmacologia , Suínos
11.
J Proteomics ; 247: 104330, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34302998

RESUMO

Ammonia (NH3) is considered as the main pollutant in livestock houses and air environment, and its adverse effects on animal and human health have attracted widespread attention. However, trachea proteomics respond to NH3 is lacking, which is crucial to understanding how NH3 induces respiratory damage. In this study, we performed labeled quantitative proteomic (TMT-MS) analysis in the trachea of fatting pigs exposed to NH3 for 30 days. The proteomic results were then validated by Immunohistochemistry (IHC) and Parallel Reaction Monitoring (PRM). The results showed that a total of 126 differentially abundant proteins (DAPs) were identified (fold change <0.83 or > 1.2 and P < 0.05), including 70 differentially up-regulated proteins (DUPs) and 56 differentially down-regulated proteins (DDPs). These proteins were mainly located in intracellular regions and involved in immune response, metabolism and protein synthesis. The results of DAPs (EHHADH, RPL28, SLC25A6, TUBB6, CD14, CTSS, RPS11, RPL19, SLC25A5, RPS8, FABP3, RPL21, RPL34, RPL32, PDIA3, FBP1, HSPH1, SAR1A and SEC24C) verified by IHC and PRM were consistent with the proteomic results. The results of this study provided a basis and a novel insight for understanding the mechanism of NH3-induced tracheal injury. SIGNIFICANCE: Ammonia (NH3) is considered as the main pollutant in livestock houses and air environment, and its adverse effects on animal and human health have attracted widespread attention. However, trachea proteomics respond to NH3 is lacking, which is crucial to understanding how NH3 induces respiratory damage. Therefore, in this study, labeled quantitative proteomics (TMT-MS) was used to detect trachea tissue samples from finishing pigs in NH3 exposure group and control group, and PRM method was used to further verify the highly abundant proteins in NH3 exposure samples, so as to identify new diagnostic markers for NH3 poisoning. The results of this study provided a basis and a novel insight for understanding the molecular pathological mechanism of NH3-induced tracheal injury.


Assuntos
Amônia , Poluentes Ambientais , Animais , Proteínas , Proteômica , Suínos , Traqueia
12.
Ecotoxicol Environ Saf ; 210: 111870, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33440271

RESUMO

Ammonia is the main harmful gas in livestock houses. However, the toxic mechanism of ammonia is still unclear. Therefore, we examined the effects of ammonia exposure on different tissues of fattening pigs by histological analysis and transcriptome techniques in this study. The results showed that there were varying degrees of pathological changes in liver, kidney, hypothalamus, jejunum, lungs, spleen, heart and trachea of fattening pigs under ammonia exposure. Notably, the extent of damage in liver, kidney, jejunum, lungs, hypothalamus and trachea was more severe than that in heart and spleen. Transcriptome results showed that ammonia exposure caused changes in 349, 335, 340, 229, 120, 578, 407 and 115 differentially expressed genes in liver, kidney, spleen, lung, trachea, hypothalamus, jejunum and heart, respectively. Interestingly, the changes in solute vector (SLC) family genes were found in all 8 tissues, and the verified gene results (SLC11A1, SLC17A7, SLC17A6, SLC6A4, SLC22A7, SLC25A3, SLC28A3, SLC7A2, SLC6A6, SLC38A5, SLC22A12, SLC34A1, SLC26A1, SLC26A6, SLC27A5, SLC22A8 and SLC44A4) were consistent with qRT-PCR results. In conclusion, ammonia exposure can cause pathological changes in many tissues and organs of fattening pigs and changes in the SCL family gene network. Importantly, the SCL family is involved in the toxic mechanism of ammonia. Our findings will provide a new insight for better assessing the mechanism of ammonia toxicity.


Assuntos
Amônia/toxicidade , Proteínas de Membrana Transportadoras/genética , Animais , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Miocárdio/patologia , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Suínos , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia , Transcriptoma/efeitos dos fármacos
13.
Ecotoxicol Environ Saf ; 211: 111910, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444879

RESUMO

Cadmium (Cd) is a typical pollutant and carcinogen in environment. Exposure assessment of contaminants is an important component of occupational and environmental epidemiological studies. Early studies of Cd have focused on aquatic animals, chickens and rats. However, toxicological evaluation of Cd in pigs has not been reported. Therefore, twelve pigs were randomly divided into two groups (n = 6): the control group and the Cd group (Cd content: 15 ± 0.242 mg/kg feed) in this study, the experimental period was 30 d, and the toxic effects of Cd on the liver of weanling piglets were examined by antioxidant function, liver function, Cd content, histological examination and transcriptomics. The results showed that the changes of antioxidant function, liver function and Cd content were significant in the liver. Transcriptional profiling results showed that 399 differentially expressed genes (DEGs) were significantly up-regulated while 369 DEGs were remarkably down-regulated in Cd group, and which were concentrated in three ontologies: molecular function, cellular component and biological processes. Interestingly, significant changes in some genes of the cytochrome P450 enzyme (CYP450) and solute carrier (SLC) families have been observed and were consistent with qRT-PCR results. In conclusion, Cd could cause liver injury in weanling piglets and change the transcriptomic characteristics of liver. CYP450 and SLC families play an indispensable role in Cd-mediated hepatotoxicity. Importantly, changes in mRNA levels of CYP2B22, CYP7A1, CYP8B1, SLC26A8, SLC11A1, SLC27A2 and SLC22A7 induced by Cd have been reported for the first time. Our findings will provide a new insight for better assessing the mechanism of Cd toxicity to the liver.


Assuntos
Cádmio/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Ambientais/toxicidade , Animais , Antioxidantes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/farmacologia , RNA Mensageiro/genética , Suínos , Transcriptoma/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 212: 111974, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508713

RESUMO

Ammonia (NH3) is the most alkaline gaseous compound in the atmosphere and the primary gas pollutant in the piggery. It can cause irritation and damage to the airway after inhalation. However, the effects and toxicity mechanism of NH3 on the trachea are still unclear. In order to evaluate the toxic effects of NH3 inhalation on pig trachea, the changes of oxidative stress parameters (SOD, GSH, GSH-Px, and MDA), tissue structure and transcriptome in the trachea of pigs were examined after 30 days of exposure to NH3. Our results showed SOD, GSH-Px and GSH in the trachea in the NH3-treatment group were significantly decreased (P < 0.05) compared with the control group, on the contrary, MDA content was significantly higher (P < 0.05). The analysis of differentially expressed genes (DEGs) showed that 2542 DEGs (1109 up-regulated DEGs and 1433 down-regulated DEGs) were significantly changed under NH3 exposure, including many DEGs associated with inflammation, oxidative stress, microtubule activity and SLC family, and the qRT-PCR verification results of these DEGs were consistent with the transcriptome results. The results indicated that NH3 exposure could break down the mucosal barrier of the respiratory tract, induce oxidative stress and inflammation, reduce the activity of microtubules and disrupt the balance of SLC transporters. In this study, transcriptome analysis was used for the first time to explore the toxic mechanism of NH3 on pig trachea, providing new insights for better assessing the toxicity mechanism of NH3, as well as references for comparative medicine.


Assuntos
Amônia/toxicidade , Poluentes Ambientais/toxicidade , Traqueia/metabolismo , Animais , Galinhas/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Inflamação , Masculino , Microtúbulos , Estresse Oxidativo/fisiologia , Suínos , Transcriptoma , Regulação para Cima
15.
Ecotoxicol Environ Saf ; 209: 111801, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383342

RESUMO

Hydrogen sulfide (H2S), a common air pollutant and toxic gas, is detrimental to organisms and the environment. Exposure to highly concentrated H2S can induce oxidative stress and autophagy. However, the mechanism underlying the liver damage caused by H2S has not been identified. Lipopolysaccharide (LPS), the key component of endotoxin, can induce oxidative stress and autophagy. For this experiment, we used one-day-old chickens as model organisms to evaluate the effects of H2S combined with LPS on oxidative stress and autophagy. The four groups (control group, LPS group, H2S group and H2S-LPS group) were observed by electron microscopy, detected by oxidative stress kit, analyzed by quantitative real-time quantitative PCR, and analyzed by Western blot. We found that the activities of antioxidant enzymes (superoxide dismutase, antioxidant glutathione, catalase, and glutathione peroxidase) decreased in the H2S group compared to those in the control group; however, malondialdehyde levels in the H2S group increased. Molecular-level studies showed that the expression of genes associated with the PI3K/ AKT/ TOR pathways in the H2S group decreased, whereas the expression of other autophagy-related genes (Beclin1, ATG5 and the ratio of LC3-II/ LC3-I) increased compared to that in the control group. These findings suggest that H2S caused oxidative stress and induced autophagy through the PI3K/ AKT/ TOR pathway in chicken liver cells. Additionally, exposure to H2S aggravated LPS-induced oxidative stress and autophagy injury. Capsule: Aerial exposure to H2S can cause oxidative stress in chicken livers and induce autophagy through the PI3K/AKT/TOR pathway, and can aggravate LPS-induced oxidative stress and autophagy.


Assuntos
Sulfeto de Hidrogênio/toxicidade , Lipopolissacarídeos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Catalase/metabolismo , Galinhas/metabolismo , Glutationa Peroxidase/metabolismo , Hepatócitos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hepatopatias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/metabolismo
16.
Sci Total Environ ; 742: 140532, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623172

RESUMO

Inflammation is an essential biological process for maintaining homeostasis in the body. However, excessive inflammatory response is closely related to many chronic diseases. Ammonia is a known environmental pollutant and a main harmful gas in the environment of livestock house. It causes deterioration of air quality and poses a threat to human and animal health. Chickens are very sensitive to ammonia. In order to assess the toxicity of ammonia to the heart, the pathology, ATPase activities, markers of oxidative stress, inflammatory pathways and inflammation markers were investigated in the hearts of chickens exposed to ammonia. The results showed that the cardiac pathological structure, oxidative stress index, and ATPase activity changed significantly in ammonia-treated chickens. In addition, the inflammation pathways (JAK/STAT and MAPK) were activated in the ammonia group, and the inflammatory markers (COX-2, TNF-α, NF-κB and PPAR-γ) were significantly altered at both mRNA and protein levels. In conclusion, excess ammonia can activate inflammatory pathways through oxidative stress and abnormal energy metabolism, and induce cardiac inflammatory injury. Our findings will provide a new insight for better assessing the toxicity mechanism of ammonia on the heart.


Assuntos
Amônia , Galinhas , Animais , Metabolismo Energético , Humanos , Inflamação , NF-kappa B , Estresse Oxidativo
17.
Biol Trace Elem Res ; 195(2): 559-568, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31506910

RESUMO

Selenium (Se) is a trace element for human and animal health. Cadmium (Cd) is a known human carcinogen. The effects of Cd on the environment and humans are well known. Because chickens are at the top of the food chain, it is a good experimental animal model for assessing heavy metal toxicity and its potential threat to humans. Selenomethionine (Se-met) is a suitable form for nutritional Se supplementation. Therefore, the toxicity of Cd to the chicken liver and the antagonistic effects of Se-met on Cd were examined at the molecular level in the present study. The results showed that oxidative stress indicators (apoptosis-related genes, P13K/AKT pathway-related genes, and heat shock proteins (HSPs)-related genes) in the Cd group have changed significantly, indicating Cd induced hepatocyte stress and apoptosis. Interestingly, the changes in oxidative stress indicators (apoptosis-related genes, P13K/AKT pathway-related genes, and HSPs-related genes) in the Cd-Se-met group were mitigated compared with the control group. Our results indicated that Cd can induce hepatocyte apoptosis and stress in the chickens. Se-met has an ameliorative effect on Cd-induced apoptosis of chicken hepatocyte by regulating PI3K/AKT pathway. Our findings will provide a new insight for better understanding of the detoxification function of Se-met to heavy metals.


Assuntos
Apoptose/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selenometionina/farmacologia , Animais , Cádmio/toxicidade , Galinhas , Dieta , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Selenometionina/administração & dosagem
18.
Ecotoxicol Environ Saf ; 182: 109464, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31398777

RESUMO

Chlorpyrifos (CPF) is an environmental pollutant due to its high toxicity to aquatic animals. Because CPF was detected in aquatic environments in many countries, it has been widely concerned by researchers. Although the immunotoxicity of CPF to fish had been reported, the immunotoxicity mechanism is still not clear. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. However, the immunotoxicity identification of CPF on fish had not been reported by transcriptome analysis. In the present study, we examined the effects of CPF on organismal system in the spleen of common carp by transcriptome analysis. We have successfully constructed a database of transcriptome analysis of carp spleens under exposure to CPF and found 773 differentially expressed genes (DEGs) (including 498 up-regulated DEGs and 275 down-regulated DEGs) and 4 branches (containing 33 known KEGG pathways). Some genes associated with the 4 pathways (Complement and coagulation cascades, PPAR signaling pathway, Fat digestion and absorption, and Collecting duct acid secretion) contained in organismal system were validated by quantitative real-time PCR and showed significant improvement compared with the control group. Our results indicated that exposure to CPF caused a change in the signal pathways of organismal system in carp spleens. The present study provides new insights into the immunotoxicity mechanism and risk assessment of CPF, as well as references for comparative medicine.


Assuntos
Clorpirifos/toxicidade , Baço/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Atrazina/toxicidade , Carpas , Sistema Imunitário/efeitos dos fármacos , Inseticidas/toxicidade , Transdução de Sinais , Baço/fisiologia
19.
Fish Shellfish Immunol ; 93: 1093-1099, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310849

RESUMO

Chlorpyrifos (CPF) has become a mainly pollution in water environment. Micro-RNAs (miRNAs) play an important part in the development of apoptosis and autophagy. However, the potential mechanism of CPF induced kidney toxicity and the roles of miRNAs are still unclear. To explore the underlying mechanism, the kidney of common carp exposed to different concentrations of CPF for 40 days was used as a research object. We found that CPF could damage the ultrastructure and function of kidney; and also caused antioxidant system disorder. CPF inhibited the mRNA level of miR-19a which improved AMP-activated protein kinase (AMPK). Furthermore, the detection of apoptosis and autophagy relative genes showed that the expressions of TSC complex subunit 2 (TSC2), light chain 3 (LC3), Dynein, tumor protein 53 (p53), Bcl-2 associated X protein (Bax), caspase-3 and caspase-9 were enhanced and the expressions of nechanistic target of rapamycin (mTOR), Ras homolog mTORC1 binding (Rheb) and B-cell lymphoma (Bcl-2) were reduced in dose-dependent way. Taken together, we conclude that CPF causes oxidative stress and miR-19a-AMPK axis disorder, thereby promotes apoptosis and autophagy in common carp kidney. Our study will provide theoretical basis for toxicology research and environmental protection of CPF.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carpas/fisiologia , Clorpirifos/efeitos adversos , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Poluentes Químicos da Água/efeitos adversos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carpas/genética , Carpas/imunologia , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Inseticidas/efeitos adversos , Rim/efeitos dos fármacos , Rim/enzimologia , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória
20.
Chemosphere ; 235: 858-866, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31284134

RESUMO

Ammonia is a known environmental pollutant around the world. It leads to the deterioration of air quality and has adverse effects on human health. Although previous studies have demonstrated that ammonia caused some health problems to chickens, it is still unclear whether ammonia causes cardiac toxicity. The functional autophagy is very important for cardiac homeostasis. Therefore, the role of autophagy was investigated in the mechanism of chicken heart damage induced by environmental contaminant ammonia in our present study. The results from the oxidative stress index (SOD, GPx, H2O2, and MDA), NO content, iNOS activity, and transmission electron microscopy indicated that excess ammonia induced oxidative stress and autophagy in the chicken heart. The expression results from miR-202-5p and PTEN/AKT/mTOR (PTEN, LC3-I, LC3-II, p-AKT, AKT, Beclin1, Dynein, ATG5, p-mTOR and mTOR) signaling pathway-related genes further confirmed that excess ammonia induced cardiac autophagy. In conclusion, these results demonstrated that excess ammonia can cause cardiac damage and mediate mir-202-5p to regulate autophagy through PTEN/AKT/mTOR pathway in the chicken heart injury. Our findings will provide a new insight for better assessing the toxicity mechanism of environmental pollutants ammonia on the heart.


Assuntos
Poluentes Atmosféricos/toxicidade , Amônia/toxicidade , Autofagia/genética , Traumatismos Cardíacos/induzido quimicamente , MicroRNAs/genética , Miocárdio/patologia , Animais , Cardiotoxicidade , Galinhas/metabolismo , Coração/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Miocárdio/química , Estresse Oxidativo/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...